Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | g18+g17 | g5+5/3g4−g3+g2 | g29 | g23 |
weight | ω1+ω2 | 2ω3 | ω1+ω2+6ω3 | 10ω3 |
Isotypical components + highest weight | Vω1+ω2 → (1, 1, 0) | V2ω3 → (0, 0, 2) | Vω1+ω2+6ω3 → (1, 1, 6) | V10ω3 → (0, 0, 10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | ω1+ω2+6ω3 −ω1+2ω2+6ω3 2ω1−ω2+6ω3 ω1+ω2+4ω3 6ω3 −ω1+2ω2+4ω3 6ω3 2ω1−ω2+4ω3 ω1+ω2+2ω3 −2ω1+ω2+6ω3 ω1−2ω2+6ω3 4ω3 −ω1+2ω2+2ω3 4ω3 2ω1−ω2+2ω3 ω1+ω2 −ω1−ω2+6ω3 −2ω1+ω2+4ω3 ω1−2ω2+4ω3 2ω3 −ω1+2ω2 2ω3 2ω1−ω2 ω1+ω2−2ω3 −ω1−ω2+4ω3 −2ω1+ω2+2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 0 2ω1−ω2−2ω3 ω1+ω2−4ω3 −ω1−ω2+2ω3 −2ω1+ω2 ω1−2ω2 −2ω3 −ω1+2ω2−4ω3 −2ω3 2ω1−ω2−4ω3 ω1+ω2−6ω3 −ω1−ω2 −2ω1+ω2−2ω3 ω1−2ω2−2ω3 −4ω3 −ω1+2ω2−6ω3 −4ω3 2ω1−ω2−6ω3 −ω1−ω2−2ω3 −2ω1+ω2−4ω3 ω1−2ω2−4ω3 −6ω3 −6ω3 −ω1−ω2−4ω3 −2ω1+ω2−6ω3 ω1−2ω2−6ω3 −ω1−ω2−6ω3 | 10ω3 8ω3 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 −8ω3 −10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | ω1+ω2+6ω3 −ω1+2ω2+6ω3 2ω1−ω2+6ω3 ω1+ω2+4ω3 6ω3 −ω1+2ω2+4ω3 6ω3 2ω1−ω2+4ω3 ω1+ω2+2ω3 −2ω1+ω2+6ω3 ω1−2ω2+6ω3 4ω3 −ω1+2ω2+2ω3 4ω3 2ω1−ω2+2ω3 ω1+ω2 −ω1−ω2+6ω3 −2ω1+ω2+4ω3 ω1−2ω2+4ω3 2ω3 −ω1+2ω2 2ω3 2ω1−ω2 ω1+ω2−2ω3 −ω1−ω2+4ω3 −2ω1+ω2+2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 0 2ω1−ω2−2ω3 ω1+ω2−4ω3 −ω1−ω2+2ω3 −2ω1+ω2 ω1−2ω2 −2ω3 −ω1+2ω2−4ω3 −2ω3 2ω1−ω2−4ω3 ω1+ω2−6ω3 −ω1−ω2 −2ω1+ω2−2ω3 ω1−2ω2−2ω3 −4ω3 −ω1+2ω2−6ω3 −4ω3 2ω1−ω2−6ω3 −ω1−ω2−2ω3 −2ω1+ω2−4ω3 ω1−2ω2−4ω3 −6ω3 −6ω3 −ω1−ω2−4ω3 −2ω1+ω2−6ω3 ω1−2ω2−6ω3 −ω1−ω2−6ω3 | 10ω3 8ω3 6ω3 4ω3 2ω3 0 −2ω3 −4ω3 −6ω3 −8ω3 −10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω2+6ω3⊕M−ω1+2ω2+6ω3⊕M2ω1−ω2+6ω3⊕2M6ω3⊕Mω1+ω2+4ω3⊕M−2ω1+ω2+6ω3⊕Mω1−2ω2+6ω3⊕M−ω1+2ω2+4ω3⊕M2ω1−ω2+4ω3⊕M−ω1−ω2+6ω3⊕2M4ω3⊕Mω1+ω2+2ω3⊕M−2ω1+ω2+4ω3⊕Mω1−2ω2+4ω3⊕M−ω1+2ω2+2ω3⊕M2ω1−ω2+2ω3⊕M−ω1−ω2+4ω3⊕2M2ω3⊕Mω1+ω2⊕M−2ω1+ω2+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕M2ω1−ω2⊕M−ω1−ω2+2ω3⊕2M0⊕Mω1+ω2−2ω3⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1−ω2⊕2M−2ω3⊕Mω1+ω2−4ω3⊕M−2ω1+ω2−2ω3⊕Mω1−2ω2−2ω3⊕M−ω1+2ω2−4ω3⊕M2ω1−ω2−4ω3⊕M−ω1−ω2−2ω3⊕2M−4ω3⊕Mω1+ω2−6ω3⊕M−2ω1+ω2−4ω3⊕Mω1−2ω2−4ω3⊕M−ω1+2ω2−6ω3⊕M2ω1−ω2−6ω3⊕M−ω1−ω2−4ω3⊕2M−6ω3⊕M−2ω1+ω2−6ω3⊕Mω1−2ω2−6ω3⊕M−ω1−ω2−6ω3 | M10ω3⊕M8ω3⊕M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3⊕M−8ω3⊕M−10ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω2+6ω3⊕M−ω1+2ω2+6ω3⊕M2ω1−ω2+6ω3⊕2M6ω3⊕Mω1+ω2+4ω3⊕M−2ω1+ω2+6ω3⊕Mω1−2ω2+6ω3⊕M−ω1+2ω2+4ω3⊕M2ω1−ω2+4ω3⊕M−ω1−ω2+6ω3⊕2M4ω3⊕Mω1+ω2+2ω3⊕M−2ω1+ω2+4ω3⊕Mω1−2ω2+4ω3⊕M−ω1+2ω2+2ω3⊕M2ω1−ω2+2ω3⊕M−ω1−ω2+4ω3⊕2M2ω3⊕Mω1+ω2⊕M−2ω1+ω2+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕M2ω1−ω2⊕M−ω1−ω2+2ω3⊕2M0⊕Mω1+ω2−2ω3⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1−ω2⊕2M−2ω3⊕Mω1+ω2−4ω3⊕M−2ω1+ω2−2ω3⊕Mω1−2ω2−2ω3⊕M−ω1+2ω2−4ω3⊕M2ω1−ω2−4ω3⊕M−ω1−ω2−2ω3⊕2M−4ω3⊕Mω1+ω2−6ω3⊕M−2ω1+ω2−4ω3⊕Mω1−2ω2−4ω3⊕M−ω1+2ω2−6ω3⊕M2ω1−ω2−6ω3⊕M−ω1−ω2−4ω3⊕2M−6ω3⊕M−2ω1+ω2−6ω3⊕Mω1−2ω2−6ω3⊕M−ω1−ω2−6ω3 | M10ω3⊕M8ω3⊕M6ω3⊕M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3⊕M−6ω3⊕M−8ω3⊕M−10ω3 |
2 & | -1 & | 0\\ |
-1 & | 2 & | 0\\ |
0 & | 0 & | 2\\ |