Subalgebra A22+A281E16
82 out of 119
Computations done by the calculator project.

Subalgebra type: A22+A281 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A22 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: E16

Elements Cartan subalgebra scaled to act by two by components: A22: (2, 2, 3, 4, 3, 2): 4, (0, -1, -1, -2, -2, -2): 4, A281: (0, 6, 6, 10, 6, 0): 56
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: g32+g33, g21+g20, g2g3+g4+g5
Positive simple generators: g33+g32, g20+g21, 6g5+10g46g3+6g2
Cartan symmetric matrix: (11/201/210001/14)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4202400056)
Decomposition of ambient Lie algebra: V10ω3Vω1+ω2+6ω3V2ω3Vω1+ω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.g18+g17g5+5/3g4g3+g2g29g23
weightω1+ω22ω3ω1+ω2+6ω310ω3
Isotypic module decomposition over primal subalgebra (total 4 isotypic components).
Isotypical components + highest weightVω1+ω2 → (1, 1, 0)V2ω3 → (0, 0, 2)Vω1+ω2+6ω3 → (1, 1, 6)V10ω3 → (0, 0, 10)
Module label W1W2W3W4
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g18g17
g20g21
g33+g32
2h62h52h4h3h2
2h63h54h43h32h22h1
g32g33
2g21+2g20
g17g18
Semisimple subalgebra component.
g55/3g4+g3g2
h5+5/3h4+h3+h2
1/3g21/3g3+1/3g4+1/3g5
g29
g6
g36
g26
g15+g14
g11
g14g13
g35
g22
g24
2g31
g9g8
g16
g10g9
g34
g18+g17
g1
g27
2g28
g3+g2
g20+g21
g5+g3
g33g32
2g12
g7
g30
2g25
h3h2
2g25
h5+h3
2g30
2g7
g12
g32g33
2g21+2g20
2g22g3
2g28
2g32g5
2g27
2g1
g17g18
2g34
4g16
2g82g9
2g31
2g9+2g10
2g24
2g22
2g35
4g11
2g142g15
2g132g14
2g26
2g36
4g6
2g29
g23
g19
g15g14g13
2g102g9+2g8
2g5+6g4+2g32g2
2h56h4+2h3+2h2
10g210g318g4+10g5
28g828g928g10
56g13+56g1456g15
168g19
168g23
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
ω1+ω2+6ω3
ω1+2ω2+6ω3
2ω1ω2+6ω3
ω1+ω2+4ω3
6ω3
ω1+2ω2+4ω3
6ω3
2ω1ω2+4ω3
ω1+ω2+2ω3
2ω1+ω2+6ω3
ω12ω2+6ω3
4ω3
ω1+2ω2+2ω3
4ω3
2ω1ω2+2ω3
ω1+ω2
ω1ω2+6ω3
2ω1+ω2+4ω3
ω12ω2+4ω3
2ω3
ω1+2ω2
2ω3
2ω1ω2
ω1+ω22ω3
ω1ω2+4ω3
2ω1+ω2+2ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
0
2ω1ω22ω3
ω1+ω24ω3
ω1ω2+2ω3
2ω1+ω2
ω12ω2
2ω3
ω1+2ω24ω3
2ω3
2ω1ω24ω3
ω1+ω26ω3
ω1ω2
2ω1+ω22ω3
ω12ω22ω3
4ω3
ω1+2ω26ω3
4ω3
2ω1ω26ω3
ω1ω22ω3
2ω1+ω24ω3
ω12ω24ω3
6ω3
6ω3
ω1ω24ω3
2ω1+ω26ω3
ω12ω26ω3
ω1ω26ω3
10ω3
8ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
8ω3
10ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
ω1+ω2+6ω3
ω1+2ω2+6ω3
2ω1ω2+6ω3
ω1+ω2+4ω3
6ω3
ω1+2ω2+4ω3
6ω3
2ω1ω2+4ω3
ω1+ω2+2ω3
2ω1+ω2+6ω3
ω12ω2+6ω3
4ω3
ω1+2ω2+2ω3
4ω3
2ω1ω2+2ω3
ω1+ω2
ω1ω2+6ω3
2ω1+ω2+4ω3
ω12ω2+4ω3
2ω3
ω1+2ω2
2ω3
2ω1ω2
ω1+ω22ω3
ω1ω2+4ω3
2ω1+ω2+2ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
0
2ω1ω22ω3
ω1+ω24ω3
ω1ω2+2ω3
2ω1+ω2
ω12ω2
2ω3
ω1+2ω24ω3
2ω3
2ω1ω24ω3
ω1+ω26ω3
ω1ω2
2ω1+ω22ω3
ω12ω22ω3
4ω3
ω1+2ω26ω3
4ω3
2ω1ω26ω3
ω1ω22ω3
2ω1+ω24ω3
ω12ω24ω3
6ω3
6ω3
ω1ω24ω3
2ω1+ω26ω3
ω12ω26ω3
ω1ω26ω3
10ω3
8ω3
6ω3
4ω3
2ω3
0
2ω3
4ω3
6ω3
8ω3
10ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3Mω1+ω2+6ω3Mω1+2ω2+6ω3M2ω1ω2+6ω32M6ω3Mω1+ω2+4ω3M2ω1+ω2+6ω3Mω12ω2+6ω3Mω1+2ω2+4ω3M2ω1ω2+4ω3Mω1ω2+6ω32M4ω3Mω1+ω2+2ω3M2ω1+ω2+4ω3Mω12ω2+4ω3Mω1+2ω2+2ω3M2ω1ω2+2ω3Mω1ω2+4ω32M2ω3Mω1+ω2M2ω1+ω2+2ω3Mω12ω2+2ω3Mω1+2ω2M2ω1ω2Mω1ω2+2ω32M0Mω1+ω22ω3M2ω1+ω2Mω12ω2Mω1+2ω22ω3M2ω1ω22ω3Mω1ω22M2ω3Mω1+ω24ω3M2ω1+ω22ω3Mω12ω22ω3Mω1+2ω24ω3M2ω1ω24ω3Mω1ω22ω32M4ω3Mω1+ω26ω3M2ω1+ω24ω3Mω12ω24ω3Mω1+2ω26ω3M2ω1ω26ω3Mω1ω24ω32M6ω3M2ω1+ω26ω3Mω12ω26ω3Mω1ω26ω3M10ω3M8ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M8ω3M10ω3
Isotypic characterMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3Mω1+ω2+6ω3Mω1+2ω2+6ω3M2ω1ω2+6ω32M6ω3Mω1+ω2+4ω3M2ω1+ω2+6ω3Mω12ω2+6ω3Mω1+2ω2+4ω3M2ω1ω2+4ω3Mω1ω2+6ω32M4ω3Mω1+ω2+2ω3M2ω1+ω2+4ω3Mω12ω2+4ω3Mω1+2ω2+2ω3M2ω1ω2+2ω3Mω1ω2+4ω32M2ω3Mω1+ω2M2ω1+ω2+2ω3Mω12ω2+2ω3Mω1+2ω2M2ω1ω2Mω1ω2+2ω32M0Mω1+ω22ω3M2ω1+ω2Mω12ω2Mω1+2ω22ω3M2ω1ω22ω3Mω1ω22M2ω3Mω1+ω24ω3M2ω1+ω22ω3Mω12ω22ω3Mω1+2ω24ω3M2ω1ω24ω3Mω1ω22ω32M4ω3Mω1+ω26ω3M2ω1+ω24ω3Mω12ω24ω3Mω1+2ω26ω3M2ω1ω26ω3Mω1ω24ω32M6ω3M2ω1+ω26ω3Mω12ω26ω3Mω1ω26ω3M10ω3M8ω3M6ω3M4ω3M2ω3M0M2ω3M4ω3M6ω3M8ω3M10ω3

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 980.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (333.33, 1046.67)
1: (0.00, 1.00, 0.00): (266.67, 1113.33)
2: (0.00, 0.00, 1.00): (200.00, 980.00)



Made total 6570789 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
3*2 (unknown) gens:
(
x_{1} g_{-32}+x_{2} g_{-33}, x_{10} g_{33}+x_{9} g_{32},
x_{3} g_{21}+x_{4} g_{20}, x_{12} g_{-20}+x_{11} g_{-21},
x_{5} g_{-2}+x_{6} g_{-3}+x_{7} g_{-4}+x_{8} g_{-5}, x_{16} g_{5}+x_{15} g_{4}+x_{14} g_{3}+x_{13} g_{2})
h: (2, 2, 3, 4, 3, 2), e = combination of g_{32} g_{33} , f= combination of g_{-32} g_{-33} h: (0, -1, -1, -2, -2, -2), e = combination of g_{-21} g_{-20} , f= combination of g_{21} g_{20} h: (0, 6, 6, 10, 6, 0), e = combination of g_{2} g_{3} g_{4} g_{5} , f= combination of g_{-2} g_{-3} g_{-4} g_{-5} Positive weight subsystem: 4 vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)
Symmetric Cartan default scale: \begin{pmatrix}
2 & -1 & 0\\
-1 & 2 & 0\\
0 & 0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{10\omega_{3}}+V_{8\omega_{3}}+V_{\omega_{1}+\omega_{2}+6\omega_{3}}+V_{-\omega_{1}+2\omega_{2}+6\omega_{3}}+V_{2\omega_{1}-\omega_{2}+6\omega_{3}}+3V_{6\omega_{3}}+V_{\omega_{1}+\omega_{2}+4\omega_{3}}+V_{-2\omega_{1}+\omega_{2}+6\omega_{3}}+V_{\omega_{1}-2\omega_{2}+6\omega_{3}}+V_{-\omega_{1}+2\omega_{2}+4\omega_{3}}+V_{2\omega_{1}-\omega_{2}+4\omega_{3}}+V_{-\omega_{1}-\omega_{2}+6\omega_{3}}+3V_{4\omega_{3}}+V_{\omega_{1}+\omega_{2}+2\omega_{3}}+V_{-2\omega_{1}+\omega_{2}+4\omega_{3}}+V_{\omega_{1}-2\omega_{2}+4\omega_{3}}+V_{-\omega_{1}+2\omega_{2}+2\omega_{3}}+V_{2\omega_{1}-\omega_{2}+2\omega_{3}}+V_{-\omega_{1}-\omega_{2}+4\omega_{3}}+4V_{2\omega_{3}}+2V_{\omega_{1}+\omega_{2}}+V_{-2\omega_{1}+\omega_{2}+2\omega_{3}}+V_{\omega_{1}-2\omega_{2}+2\omega_{3}}+2V_{-\omega_{1}+2\omega_{2}}+2V_{2\omega_{1}-\omega_{2}}+V_{-\omega_{1}-\omega_{2}+2\omega_{3}}+6V_{0}+V_{\omega_{1}+\omega_{2}-2\omega_{3}}+2V_{-2\omega_{1}+\omega_{2}}+2V_{\omega_{1}-2\omega_{2}}+V_{-\omega_{1}+2\omega_{2}-2\omega_{3}}+V_{2\omega_{1}-\omega_{2}-2\omega_{3}}+2V_{-\omega_{1}-\omega_{2}}+4V_{-2\omega_{3}}+V_{\omega_{1}+\omega_{2}-4\omega_{3}}+V_{-2\omega_{1}+\omega_{2}-2\omega_{3}}+V_{\omega_{1}-2\omega_{2}-2\omega_{3}}+V_{-\omega_{1}+2\omega_{2}-4\omega_{3}}+V_{2\omega_{1}-\omega_{2}-4\omega_{3}}+V_{-\omega_{1}-\omega_{2}-2\omega_{3}}+3V_{-4\omega_{3}}+V_{\omega_{1}+\omega_{2}-6\omega_{3}}+V_{-2\omega_{1}+\omega_{2}-4\omega_{3}}+V_{\omega_{1}-2\omega_{2}-4\omega_{3}}+V_{-\omega_{1}+2\omega_{2}-6\omega_{3}}+V_{2\omega_{1}-\omega_{2}-6\omega_{3}}+V_{-\omega_{1}-\omega_{2}-4\omega_{3}}+3V_{-6\omega_{3}}+V_{-2\omega_{1}+\omega_{2}-6\omega_{3}}+V_{\omega_{1}-2\omega_{2}-6\omega_{3}}+V_{-\omega_{1}-\omega_{2}-6\omega_{3}}+V_{-8\omega_{3}}+V_{-10\omega_{3}}
A necessary system to realize the candidate subalgebra.
x_{2} x_{10} +x_{1} x_{9} -2= 0
x_{2} x_{10} +2x_{1} x_{9} -3= 0
2x_{2} x_{10} +x_{1} x_{9} -3= 0
x_{2} x_{16} +x_{1} x_{14} = 0
x_{9} x_{16} +x_{10} x_{14} = 0
x_{1} x_{8} +x_{2} x_{6} = 0
x_{3} x_{11} -1= 0
x_{4} x_{12} +x_{3} x_{11} -2= 0
x_{4} x_{12} -1= 0
x_{4} x_{14} +x_{3} x_{13} = 0
x_{11} x_{14} +x_{12} x_{13} = 0
x_{3} x_{6} +x_{4} x_{5} = 0
x_{5} x_{13} -6= 0
x_{6} x_{14} -6= 0
x_{7} x_{15} -10= 0
x_{8} x_{16} -6= 0
x_{8} x_{10} +x_{6} x_{9} = 0
x_{6} x_{12} +x_{5} x_{11} = 0
The above system after transformation.
x_{2} x_{10} +x_{1} x_{9} -2= 0
x_{2} x_{10} +2x_{1} x_{9} -3= 0
2x_{2} x_{10} +x_{1} x_{9} -3= 0
x_{2} x_{16} +x_{1} x_{14} = 0
x_{9} x_{16} +x_{10} x_{14} = 0
x_{1} x_{8} +x_{2} x_{6} = 0
x_{3} x_{11} -1= 0
x_{4} x_{12} +x_{3} x_{11} -2= 0
x_{4} x_{12} -1= 0
x_{4} x_{14} +x_{3} x_{13} = 0
x_{11} x_{14} +x_{12} x_{13} = 0
x_{3} x_{6} +x_{4} x_{5} = 0
x_{5} x_{13} -6= 0
x_{6} x_{14} -6= 0
x_{7} x_{15} -10= 0
x_{8} x_{16} -6= 0
x_{8} x_{10} +x_{6} x_{9} = 0
x_{6} x_{12} +x_{5} x_{11} = 0
For the calculator:
(DynkinType =A^{2}_2+A^{28}_1; ElementsCartan =((2, 2, 3, 4, 3, 2), (0, -1, -1, -2, -2, -2), (0, 6, 6, 10, 6, 0)); generators =(x_{1} g_{-32}+x_{2} g_{-33}, x_{10} g_{33}+x_{9} g_{32}, x_{3} g_{21}+x_{4} g_{20}, x_{12} g_{-20}+x_{11} g_{-21}, x_{5} g_{-2}+x_{6} g_{-3}+x_{7} g_{-4}+x_{8} g_{-5}, x_{16} g_{5}+x_{15} g_{4}+x_{14} g_{3}+x_{13} g_{2}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{2} x_{10} +x_{1} x_{9} -2, x_{2} x_{10} +2x_{1} x_{9} -3, 2x_{2} x_{10} +x_{1} x_{9} -3, x_{2} x_{16} +x_{1} x_{14} , x_{9} x_{16} +x_{10} x_{14} , x_{1} x_{8} +x_{2} x_{6} , x_{3} x_{11} -1, x_{4} x_{12} +x_{3} x_{11} -2, x_{4} x_{12} -1, x_{4} x_{14} +x_{3} x_{13} , x_{11} x_{14} +x_{12} x_{13} , x_{3} x_{6} +x_{4} x_{5} , x_{5} x_{13} -6, x_{6} x_{14} -6, x_{7} x_{15} -10, x_{8} x_{16} -6, x_{8} x_{10} +x_{6} x_{9} , x_{6} x_{12} +x_{5} x_{11} )